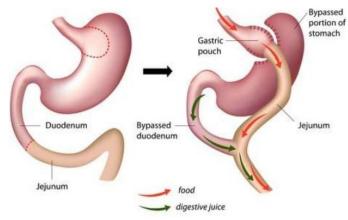


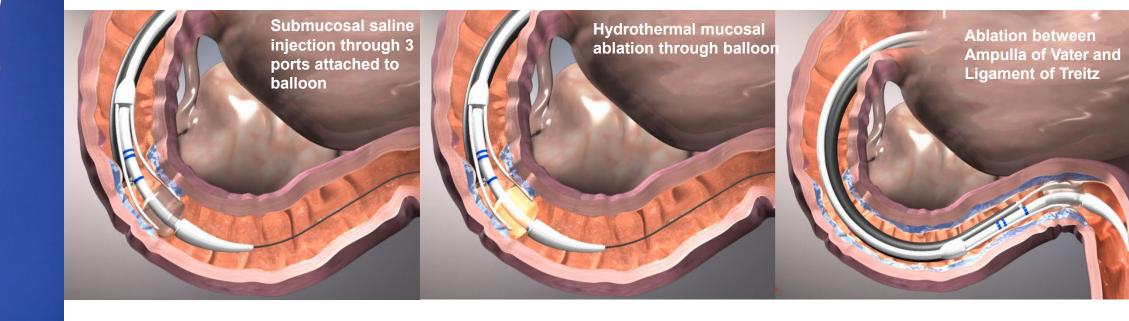
Duodenal mucosal resurfacing combined with GLP-1 eliminates insulin therapy and improves metabolic health in type 2 diabetes

A.C.G. van Baar¹, S. Meiring ¹, P. Smeele¹, T. Vriend², F. Holleman³, M.R. Soeters³, J.G.P. Tijssen⁴, M. Nieuwdorp⁵, J.J.G.H.M. Bergman¹

¹Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands; ²Dietetics, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands; ³Internal Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands; ⁴Cardiology; Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands; ⁵Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands.


Disclosures

- Jacques Bergman received research support from Fractyl for IRB-based studies and received a consultancy fee for a single advisory board meeting of Fractyl in September 2019.
- Frits Holleman reports speaker fees from Sanofi, Bioton, Astra Zeneca and Boehringer Ingelheim.


Target the duodenum for treatment of T2D

- Westernized diet induces:
 - Hyperplastic changes in duodenal mucosa
 - Altered local enteroendocrine function
 - An insulin resistant state
- Bariatric surgery improves T2D
- Surgery is too invasive for managing T2D

Roux-en-Y Gastric Bypass

Revita™ Duodenal Mucosal Resurfacing Procedure

Earlier studies with DMR

- First-in-human study in Chile (n=39)
- Multicentre study in Europe (n=46)
 - In T2D patients on oral medication
 - HbA1c decrease of 10 mmol/mol (≈comparable to 1 oral drug)¹
 - Sustained at 24 months
- How does DMR work?
 - Improves insulin sensitivity (hallmark of T2D and metabolic syndrome)
 - Compliance free single step treatment

Can we eliminate insulin therapy in T2D?

- Improve insulin resistance by DMR
- Boost the effect of DMR by GLP-1
 - Improves B-cell function and B-cell protection

Inclusion criteria INSPIRE study

- Type 2 diabetes using once daily insulin
- HbA1c <64 mmol/mol
- Proof of adequate own insulin production (c-peptide >0.5)
 - Otherwise, improving insulin resistance by DMR will not be effective

Intervention triangle

1. DMR procedure

- Insulin stopped at day of DMR
- 2. GLP-1 (Victoza®)
 - Stepwise dose increase to 1.8mg/day
- 3. Lifestyle counselling
 - Daily intake: According to Basal Metabolic Rate + 0-20%
 - Daily 30min low impact exercise

Study flow and follow-up

- Screening
- Baseline visit
 - Assessment metabolic health: Mixed meal test, liver MRI, DEXA scan
- DMR procedure (start intervention)
- 3 month visit
- 6 month visit
 - Assessment metabolic health: Mixed meal test, liver MRI, DEXA scan
- Re-introduction of insulin in case of inadequate glycaemic control

Primary endpoint

• % of patients who were off insulin at 6 months with adequate glycaemic control (HbA1c ≤ 58 mmol/mol)

Secondary endpoints

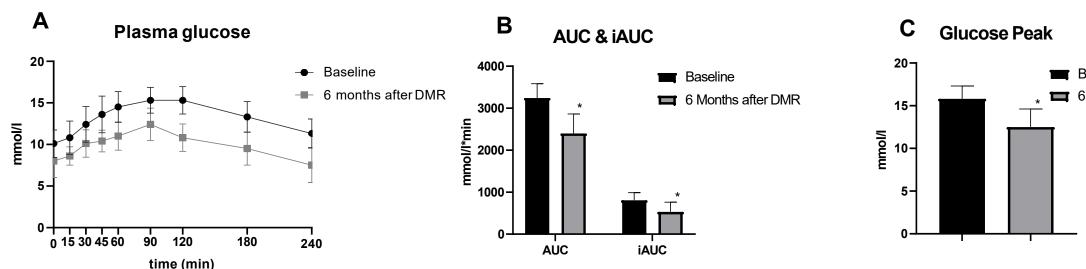
- Glycaemic parameters: HbA1c, FPG, HOMA-IR, postprandial glucose
- Metabolic parameters: BMI, liver fat (MRI), body fat (DEXA)

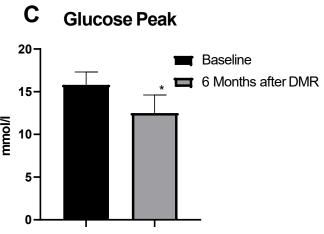
Baseline characteristics

Patient characteristics (N=16)					
Age [years]	61				
Male gender, n (%)	10 (63%)				
Duration of T2D [years]	11				
Weight [kg]	87.5				
BMI [kg/m²]	29.2				
HbA1c [mmol/mol]	58				
Fasting plasma glucose [mmol/l]	10.1				
C-peptide [nmol/l]	0.70				
HOMA-IR	8.1				
Antidiabetic medication					
Mean number of daily units of insulin	31				

Primary endpoint

75% (12/16) were free of insulin at 6 months
with maintained (improved) glycaemic control (HbA1c ≤ 58 mmol/mol)

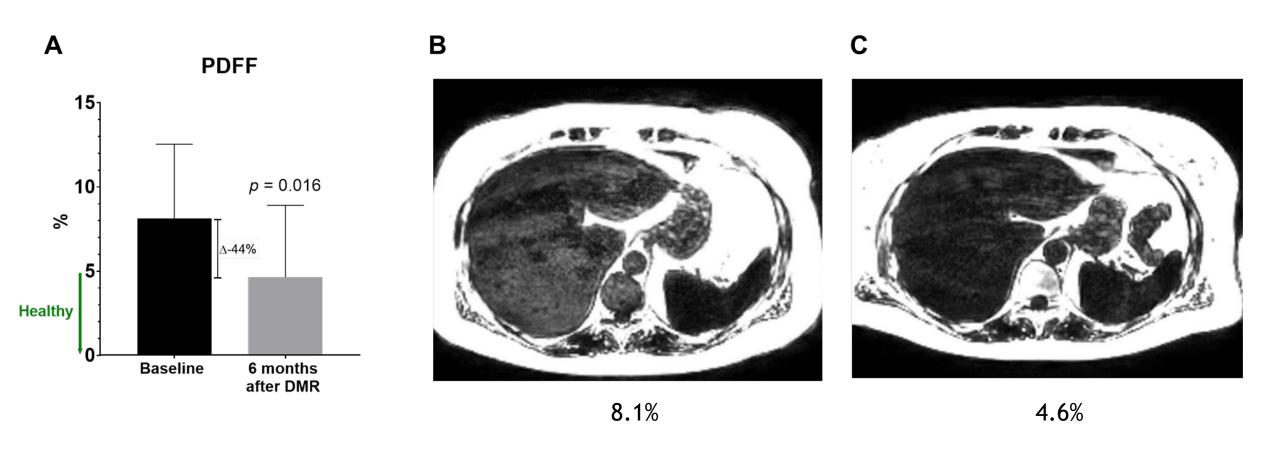

Despite elimination of insulin, improved glycaemic control


	Responders (n=12)				
	Baseline	6 months	Δ Median (95% CI)	p-value	
HbA1c [mmol/mol]	58	50	-6 (-92)	0.009	
HOMA-IR	8.9	2.5	-5.9 (-8.53.0)	0.002	
FPG [mmol/l]	10.1	7.6	-2.5 (-4.53.2)	0.011	

Without daily median insulin dose of 31 units

Extensive postprandial glycaemic inventory by mixed meal tolerance tests

All postprandial parameters improved significantly


More physiological approach of T2D: Improvement in metabolic health

	Responders (n=12)				
	Baseline	6 months	Δ Median (95% CI)	p-value	
BMI [kg/m2]	29.7	27.2	-2.3 (-3.01.9)	0.002	
Total body fat [%] (DEXA)	32.6	31.1	-2.2 (-2.41.3)	0.002	
Liver fat [%] (MRI)	8.1	4.6	-3.7 (-6.60.5)	0.016	

Loss of liverfat in T2D

Conclusion

- Single endoscopic DMR, combined with GLP-1 and lifestyle counseling, can eliminate insulin therapy in the majority of T2D patients...
 - ...while improving parameters of glycaemia
 - ...while improving overall metabolic health
- Maybe especially suited in T2D patients with fatty livers
- May be a game changing approach in the treatment of metabolic syndrome

Limitations

- Uncontrolled pilot study with limited sample size
- Contribution of each of the individual treatment components unknown
- Data must be confirmed by RCT with placebo for DMR and GLP-1
- Mechanism of DMR not yet completely clear

